Numerical techniques for the transformation to an orthogonal coordinate system aligned with a vector field
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA novel flexible field-aligned coordinate system for tokamak edge plasma simulation
Tokamak plasmas are confined by amagnetic field that limits the particle and heat transport perpendicular to the field. Parallel to the field the ionised particles canmove freely, so to obtain confinement the field lines are ‘‘closed’’ (i.e. form closed surfaces of constant poloidal flux) in the core of a tokamak. Towards, the edge, however, the field lines intersect physical surfaces, leading ...
متن کاملa new method for coordinate transformation between conformal map projections
geospatial information system (gis) has emerged as a very powerful tool for capturing, storing, analyzing, managing, and presenting data that is linked to location. the location information, which is usually obtained from existing maps or the global positioning systems (gps), refers to different coordinate and map projection systems. therefore, unification of the coordinate and mapping systems ...
متن کاملnew approach to determine 6dof position and orientation of a non-orthogonal coordinate system on the object using its image
in this paper, a new method for determining position and orientation of a coordinate system using its image is presented. this coordinate system is a three dimensional non-orthogonal system in respect to the two dimensional and orthogonal camera coordinate system. in real world, it’s exactly easy to select three directions on an object so that they don’t be orthogonal and on a plane. the image...
متن کاملThe Rotation of a Coordinate System as a Linear Transformation
and call the column vector c the representation of the vector x with respect to the basis X . Now, let V and W be vector spaces over F , let X = (x,x, . . . ,x) be a basis of V , let Y = (y,y, . . . , y) be a basis of W , and let T : V → W be a linear transformation. For any i with 1 ≤ i ≤ n we have Tx = ∑m j=1 y aji with some aji ∈ F . For an arbitrary vector x = V such that c = (c1, . . . , c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2000
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(00)00177-2